Visinin-like neuronal calcium sensor proteins regulate the slow calcium-activated afterhyperpolarizing current in the rat cerebral cortex.

نویسندگان

  • Claudio Villalobos
  • Rodrigo Andrade
چکیده

Many neurons in the nervous systems express afterhyperpolarizations that are mediated by a slow calcium-activated potassium current. This current shapes neuronal firing and is inhibited by neuromodulators, suggesting an important role in the regulation of neuronal function. Surprisingly, very little is currently known about the molecular basis for this current or how it is gated by calcium. Recently, the neuronal calcium sensor protein hippocalcin was identified as a calcium sensor for the slow afterhyperpolarizing current in the hippocampus. However, while hippocalcin is very strongly expressed in the hippocampus, this protein shows a relatively restricted distribution in the brain. Furthermore, the genetic deletion of this protein only partly reduces the slow hyperpolarizing current in hippocampus. These considerations question whether hippocalcin can be the sole calcium sensor for the slow afterhyperpolarizing current. Here we use loss of function and overexpression strategies to show that hippocalcin functions as a calcium sensor for the slow afterhyperpolarizing current in the cerebral cortex, an area where hippocalcin is expressed at much lower levels than in hippocampus. In addition we show that neurocalcin δ, but not VILIP-2, can also act as a calcium sensor for the slow afterhyperpolarizing current. Finally we show that hippocalcin and neurocalcin δ both increase the calcium sensitivity of the afterhyperpolarizing current but do not alter its sensitivity to inhibition by carbachol acting through the Gαq-11-PLCβ signaling cascade. These results point to a general role for a subgroup of visinin-like neuronal calcium sensor proteins in the activation of the slow calcium-activated afterhyperpolarizing current.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation Of Neuronal Excitability: New Mechanisms For Slow Afterhyperpolarization Activation And Modulation

REGULATION OF NEURONAL EXCITABILITY: NEW MECHANISMS FOR SLOWAFTERHYPERPOLARIZATION ACTIVATION AND MODULATIONbyCLAUDIO A. VILLALOBOSDecember 2010 Advisor: Rodrigo Andrade, PhD.Major: PharmacologyDegree: Doctor of PhilosophyOne of the most characteristic features of pyramidal cells in the prefrontal cortex(PFC) is that they present a slow afterhyperpolarizing curre...

متن کامل

Essential role for phosphatidylinositol 4,5-bisphosphate in the expression, regulation, and gating of the slow afterhyperpolarization current in the cerebral cortex.

Many neurons of the CNS and peripheral nervous system express a slow afterhyperpolarization that is mediated by a slow calcium-activated potassium current. Previous work has shown that this aftercurrent regulates repetitive firing and is an important target for neuromodulators signaling through receptors coupled to G-proteins of the Gα(q-11) and Gα(s) subtypes. Yet, despite considerable effort,...

متن کامل

Structure and Calcium Binding Properties of a Neuronal Calcium-Myristoyl Switch Protein, Visinin-Like Protein 3

Visinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.52 μM and Hill slope of 1.8). NMR assignment...

متن کامل

Visinin-like protein 1 regulates natriuretic peptide receptor B in the heart.

Accumulating evidence indicates that Visinin-like protein-1 (VILIP-1), a member of the family of neuronal calcium sensor proteins (NCS), modulates a variety of processes in extra-neuronal tissues. In this study, we describe VILIP-1 expression in the human heart, rat cardiomyocytes, and H9c2 cells, and demonstrate that VILIP-1 regulates the cell surface localization of natriuretic peptide recept...

متن کامل

Structural analysis of Mg2+ and Ca2+ binding, myristoylation, and dimerization of the neuronal calcium sensor and visinin-like protein 1 (VILIP-1).

Visinin-like protein 1 (VILIP-1) belongs to the neuronal calcium sensor family of Ca(2+)-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca(2+) and Mg(2+) binding, characterize metal-induced conformational changes, and determine structural effects of myristoylation and dimerization. Mg(2+) binds functionally to VILIP-1 at EF3 (ΔH = +1.8 kcal/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 43  شماره 

صفحات  -

تاریخ انتشار 2010